Sequencing cost!

Sequencing cost!

GTCGATTCTGCTGACTTCATGGCTTCTGTTGACG GAGAATCAGCTTTTCCAACACCCTTGAGTTTGAGT ATGTACTGCACCGTTGCAACGCGAGCACCACCAA CCAGCTCAGCCTGCATTCTTTCAAAAACTTCCAA GATTTTACTGCACATCGGTCTTGTCACACCAGCT TCACCCAGCATCACGCCCCTTCACATCCAGTAAA CTTGACTGCCACCATGAATATGTGTTCCAAGTGC CCACAACTGCTCCATCTTTTCCATGAGACATTGC GTATTCTGCACACGAATCAGCTGAGACACCAATT

Elshire et al 2011

8. Illumina HiSeq

2020

~\$ 1,500 / 384 samples = 3.9 + 6 = \$10

\$25 = 1 plot, 1 environment

Sequencing cost!

Field 1 plot , 1 env = ~\$25

Minerals: 1 sample, 1 env = ~\$10

1. When phenotypic selection is ineffective

- When phenotypic selection is ineffective 1.
- 2. To increase gain per unit time

F_{8-n},

and

- 1. When phenotypic selection is ineffective
- 2. To increase gain per unit time
- 3. For traits that are difficult to measure eg. root characteristics, canning quality

- 1. When phenotypic selection is ineffective
- 2. To increase gain per unit time
- 3. For traits that are difficult to measure
- 4. Assess agronomic performance in other environments

- 1. When phenotypic selection is ineffective
- 2. To increase gain per unit time
- 3. For traits that are difficult to measure
- 4. Assess agronomic performance in other environments
- 5. To reduce phenotyping

~24 samples per day n = 700 30 days milling!

1. h² and population size of TP

Nh²

N and h² affects both the power to detect QTL and the accuracy of GS!

- 1. h^2 and population size of TP
- 2. Genetic relationship

- 1. h² and population size of TP
- 2. Genetic relationship
- 3. Linkage disequilibrium

How many markers are needed?

- 1. h^2 and population size of TP
- 2. Genetic relationship
- 3. Linkage disequilibrium

Bernardo 2020, p285

- 1. h² and population size of TP
- 2. Genetic relationship
- 3. Linkage disequilibrium
- 4. Number of QTL

h² tend to be higher

Predicted Genomic Value

- 1. h² and population size of TP
- 2. Genetic relationship
- 3. Linkage disequilibrium
- 4. Number of QTL
- 5. Prediction models

rrBLUP is wrong!

- *i)* Each marker explains the same amount of genetic variance
- *ii) Epistasis is absent*

First author (year)	Prediction method							
	C	RR^{a}	BL	$C\pi$	EB	RK	BA	BB
Loronzana (2000)	24	0.66			0.00		1.19	
Hoffmor (2011_9)	16	0.00		0 59	0.62			
Hoffner $(2011h)$	12	0.52		0.53			0.00	
$G_{\rm Ho} (20110)$	25	0.09		0.58			0.60	0.59
Heglot (2012)	10	0.45	OFC	OFF	0.54	0.50	0.43	0.37
$K_{\rm umar}$ (2012)	10 6	0.00	0.00	0.55	0.54	0.59		
Lorenz (2012)	0	0.61	0.61	0.60				
Riedelshoimor (2012)	6	0.01	0.00	0.00		0.65		0.63
$G_{OUV} (2012)$	20	0.00	0.33			0.00		0.05
$Z_{hao}(2013)$	20	0.55	0.00	0.58		0.04	0.61	0.62
Granior (2015)	1	0.00	0.31	0.00			0.01	0.01
$\frac{1}{1000} \frac{1}{2015}$	10	0.50	0.01			0.53		
Sallam (2015)	10	0.67		0.68				
Tayoh (2015)	3	0.71		0.00			0.72	0.72
Conley (2016)	2	0.50	0.51			0.51	0.50	0.50
Duhnen (2017)	6	0.53	0.53	0.53				
Gezen (2017)	5	0.58	0.58	0.61		0.62		0.62
Kwong (2017)	6	0.30	0.29	0.31			0.31	0.31
Wolfe (2017)	21	0.30	0.30	0.30		0.33	0.31	0.31
Yamamoto (2017)	8	0.43	0.44	0.46		0.45		0 50
Nvine (2018)	30			0.49		0.48	0.77	0.50
de Oliveira (2018)	9	0.77	0.76	0.77			0.77	0.11

BA, BayesA; and

Genomic selection with Major QTL

h² = 0.6

Genomic selection with Major QTL

Fixed QTL